786

SECTION 12.1 EXERCISES

Review Questions

- Give two pieces of information which, taken together, uniquely determine a plane.
- Find a vector normal to the plane -2x 3y + 4z = 12. 2.
- Where does the plane -2x 3y + 4z = 12 intersect the coordi-3. nate axes?
- What is an equation of the plane with a normal vector $\mathbf{n} = \langle 1, 1, 1 \rangle$ that passes through the point (1, 0, 0)?
- To which coordinate axes are the following cylinders in \mathbb{R}^3 parallel: $x^2 + 2y^2 = 8$, $z^2 + 2y^2 = 8$, and $x^2 + 2z^2 = 8$?
- Describe the graph of $x = z^2$ in \mathbb{R}^3 .
- What are the traces of a surface? 7.
- What is the name of the type of surface defined by the equation $y = \frac{x^2}{4} + \frac{z^2}{9}$?
- What is the name of the type of surface defined by the equation $x^2 + \frac{y^2}{3} + 2z^2 = 1?$
- 10. What is the name of the type of surface defined by the equation $-y^2 - \frac{z^2}{2} + x^2 = 1$?

Basic Skills

- 11-14. Equations of planes Find an equation of the plane that passes through the point P_0 with a normal vector \mathbf{n} .
- 11. $P_0(0,2,-2)$; $\mathbf{n} = \langle 1,1,-1 \rangle$
- **12.** $P_0(1,0,-3); \mathbf{n} = \langle 1,-1,2 \rangle$
- **13.** $P_0(2,3,0)$; $\mathbf{n} = \langle -1,2,-3 \rangle$
- **14.** $P_0(1,2,-3)$; $\mathbf{n} = \langle -1,4,-3 \rangle$
- 15-18. Equations of planes Find an equation of the following planes.
- 15. The plane passing through the points (1, 0, 3), (0, 4, 2), and (1, 1, 1)
- 16. The plane passing through the points (-1, 1, 1), (0, 0, 2), and (3,-1,-2)
- 17. The plane passing through the points (2, -1, 4), (1, 1, -1), and (-4,1,1)
- 18. The plane passing through the points (5,3,1), (1,3,-5), and (-1,3,1)
- 19-22. Properties of planes Find the points at which the following planes intersect the coordinate axes and find equations of the lines where the planes intersect the coordinate planes. Sketch a graph of the plane.
- 19. 3x 2y + z = 6
- **20.** -4x + 8z = 16
- **21.** x + 3y 5z 30 = 0 **22.** 12x 9y + 4z + 72 = 0

- 23-24. Equations of planes For the following sets of planes, determine which pairs of planes in the set are parallel, orthogonal, or identical.
- **23.** Q: 3x 2y + z = 12; R: -x + 2y/3 z/3 = 0; \tilde{S} : -x + 2y + 7z = 1; T: 3x/2 - y + z/2 = 6
- **24.** Q: x + y z = 0; R: y + z = 0; S: x y = 0;T: x + y + z = 0
- 25-28. Parallel planes Find an equation of the plane parallel to the plane Q passing through the point P_0 .
- **25.** Q: -x + 2y 4z = 1; $P_0(1, 0, 4)$
- **26.** Q: 2x + y z = 1; $P_0(0, 2, -2)$
- **27.** $Q: 4x + 3y 2z = 12; P_0(1, -1, 3)$
- **28.** $Q: x 5y 2z = 1; P_0(1,2,0)$
- 29-32. Intersecting planes Find an equation of the line where the planes Q and R intersect.
- **29.** Q: -x + 2y + z = 1; R: x + y + z = 0
- **30.** Q: x + 2y z = 1; R: x + y + z = 1
- **31.** Q: 2x y + 3z 1 = 0; R: -x + 3y + z 4 = 0
- **32.** Q: x y 2z = 1; R: x + y + z = -1
- 33-36. Cylinders in R³ Consider the following cylinders in R³.
 - a. Identify the coordinate axis to which the cylinder is parallel.
 - b. Sketch the cylinder.
- 33. $y x^3 = 0$
- **34.** $x 2z^2 = 0$
- 35. $z \ln y = 0$
- **36.** x 1/y = 0
- 37-60. Quadric surfaces Consider the following equations of quadric surfaces.
 - a. Find the intercepts with the three coordinate axes, when they
 - b. Find the equations of the xy-, xz-, and yz-traces, when they
 - c. Sketch a graph of the surface.

Ellipsoids

- 37. $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$
- $38. \ 4x^2 + y^2 + \frac{z^2}{2} = 1$
- 39. $\frac{x^2}{3} + 3y^2 + \frac{z^2}{12} = 3$
- **40.** $\frac{x^2}{6} + 24y^2 + \frac{z^2}{24} 6 = 0$

Elliptic paraboloids

- **41.** $x = y^2 + z^2$
- **42.** $z = \frac{x^2}{4} + \frac{y^2}{9}$
- **43.** $9x 81y^2 \frac{z^2}{4} = 0$ **44.** $2y \frac{x^2}{8} \frac{z^2}{18} = 0$